pydantic_ai.tools
AgentDepsT
module-attribute
AgentDepsT = TypeVar(
"AgentDepsT", default=None, contravariant=True
)
Type variable for agent dependencies.
RunContext
dataclass
Bases: Generic[AgentDepsT]
Information about the current call.
Source code in pydantic_ai_slim/pydantic_ai/_run_context.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|
prompt
class-attribute
instance-attribute
The original user prompt passed to the run.
messages
class-attribute
instance-attribute
messages: list[ModelMessage] = field(default_factory=list)
Messages exchanged in the conversation so far.
tracer
class-attribute
instance-attribute
tracer: Tracer = field(default_factory=NoOpTracer)
The tracer to use for tracing the run.
trace_include_content
class-attribute
instance-attribute
trace_include_content: bool = False
Whether to include the content of the messages in the trace.
retries
class-attribute
instance-attribute
Number of retries for each tool so far.
tool_call_id
class-attribute
instance-attribute
tool_call_id: str | None = None
The ID of the tool call.
tool_name
class-attribute
instance-attribute
tool_name: str | None = None
Name of the tool being called.
tool_call_approved
class-attribute
instance-attribute
tool_call_approved: bool = False
Whether a tool call that required approval has now been approved.
ToolParams
module-attribute
ToolParams = ParamSpec('ToolParams', default=...)
Retrieval function param spec.
SystemPromptFunc
module-attribute
SystemPromptFunc: TypeAlias = (
Callable[[RunContext[AgentDepsT]], str]
| Callable[[RunContext[AgentDepsT]], Awaitable[str]]
| Callable[[], str]
| Callable[[], Awaitable[str]]
)
A function that may or maybe not take RunContext
as an argument, and may or may not be async.
Usage SystemPromptFunc[AgentDepsT]
.
ToolFuncContext
module-attribute
ToolFuncContext: TypeAlias = Callable[
Concatenate[RunContext[AgentDepsT], ToolParams], Any
]
A tool function that takes RunContext
as the first argument.
Usage ToolContextFunc[AgentDepsT, ToolParams]
.
ToolFuncPlain
module-attribute
ToolFuncPlain: TypeAlias = Callable[ToolParams, Any]
A tool function that does not take RunContext
as the first argument.
Usage ToolPlainFunc[ToolParams]
.
ToolFuncEither
module-attribute
ToolFuncEither: TypeAlias = (
ToolFuncContext[AgentDepsT, ToolParams]
| ToolFuncPlain[ToolParams]
)
Either kind of tool function.
This is just a union of ToolFuncContext
and
ToolFuncPlain
.
Usage ToolFuncEither[AgentDepsT, ToolParams]
.
ToolPrepareFunc
module-attribute
ToolPrepareFunc: TypeAlias = Callable[
[RunContext[AgentDepsT], "ToolDefinition"],
Awaitable["ToolDefinition | None"],
]
Definition of a function that can prepare a tool definition at call time.
See tool docs for more information.
Example — here only_if_42
is valid as a ToolPrepareFunc
:
from pydantic_ai import RunContext, Tool
from pydantic_ai.tools import ToolDefinition
async def only_if_42(
ctx: RunContext[int], tool_def: ToolDefinition
) -> ToolDefinition | None:
if ctx.deps == 42:
return tool_def
def hitchhiker(ctx: RunContext[int], answer: str) -> str:
return f'{ctx.deps} {answer}'
hitchhiker = Tool(hitchhiker, prepare=only_if_42)
Usage ToolPrepareFunc[AgentDepsT]
.
ToolsPrepareFunc
module-attribute
ToolsPrepareFunc: TypeAlias = Callable[
[RunContext[AgentDepsT], list["ToolDefinition"]],
Awaitable["list[ToolDefinition] | None"],
]
Definition of a function that can prepare the tool definition of all tools for each step. This is useful if you want to customize the definition of multiple tools or you want to register a subset of tools for a given step.
Example — here turn_on_strict_if_openai
is valid as a ToolsPrepareFunc
:
from dataclasses import replace
from pydantic_ai import Agent, RunContext
from pydantic_ai.tools import ToolDefinition
async def turn_on_strict_if_openai(
ctx: RunContext[None], tool_defs: list[ToolDefinition]
) -> list[ToolDefinition] | None:
if ctx.model.system == 'openai':
return [replace(tool_def, strict=True) for tool_def in tool_defs]
return tool_defs
agent = Agent('openai:gpt-4o', prepare_tools=turn_on_strict_if_openai)
Usage ToolsPrepareFunc[AgentDepsT]
.
DocstringFormat
module-attribute
Supported docstring formats.
'google'
— Google-style docstrings.'numpy'
— Numpy-style docstrings.'sphinx'
— Sphinx-style docstrings.'auto'
— Automatically infer the format based on the structure of the docstring.
DeferredToolRequests
dataclass
Tool calls that require approval or external execution.
This can be used as an agent's output_type
and will be used as the output of the agent run if the model called any deferred tools.
Results can be passed to the next agent run using a DeferredToolResults
object with the same tool call IDs.
See deferred tools docs for more information.
Source code in pydantic_ai_slim/pydantic_ai/tools.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
calls
class-attribute
instance-attribute
calls: list[ToolCallPart] = field(default_factory=list)
Tool calls that require external execution.
approvals
class-attribute
instance-attribute
approvals: list[ToolCallPart] = field(default_factory=list)
Tool calls that require human-in-the-loop approval.
ToolApproved
dataclass
Indicates that a tool call has been approved and that the tool function should be executed.
Source code in pydantic_ai_slim/pydantic_ai/tools.py
152 153 154 155 156 157 158 159 |
|
ToolDenied
dataclass
Indicates that a tool call has been denied and that a denial message should be returned to the model.
Source code in pydantic_ai_slim/pydantic_ai/tools.py
162 163 164 165 166 167 168 169 170 171 |
|
message
class-attribute
instance-attribute
message: str = 'The tool call was denied.'
The message to return to the model.
DeferredToolResults
dataclass
Results for deferred tool calls from a previous run that required approval or external execution.
The tool call IDs need to match those from the DeferredToolRequests
output object from the previous run.
See deferred tools docs for more information.
Source code in pydantic_ai_slim/pydantic_ai/tools.py
201 202 203 204 205 206 207 208 209 210 211 212 213 |
|
calls
class-attribute
instance-attribute
Map of tool call IDs to results for tool calls that required external execution.
Tool
dataclass
Bases: Generic[AgentDepsT]
A tool function for an agent.
Source code in pydantic_ai_slim/pydantic_ai/tools.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
|
__init__
__init__(
function: ToolFuncEither[AgentDepsT],
*,
takes_ctx: bool | None = None,
max_retries: int | None = None,
name: str | None = None,
description: str | None = None,
prepare: ToolPrepareFunc[AgentDepsT] | None = None,
docstring_format: DocstringFormat = "auto",
require_parameter_descriptions: bool = False,
schema_generator: type[
GenerateJsonSchema
] = GenerateToolJsonSchema,
strict: bool | None = None,
sequential: bool = False,
requires_approval: bool = False,
function_schema: FunctionSchema | None = None
)
Create a new tool instance.
Example usage:
from pydantic_ai import Agent, RunContext, Tool
async def my_tool(ctx: RunContext[int], x: int, y: int) -> str:
return f'{ctx.deps} {x} {y}'
agent = Agent('test', tools=[Tool(my_tool)])
or with a custom prepare method:
from pydantic_ai import Agent, RunContext, Tool
from pydantic_ai.tools import ToolDefinition
async def my_tool(ctx: RunContext[int], x: int, y: int) -> str:
return f'{ctx.deps} {x} {y}'
async def prep_my_tool(
ctx: RunContext[int], tool_def: ToolDefinition
) -> ToolDefinition | None:
# only register the tool if `deps == 42`
if ctx.deps == 42:
return tool_def
agent = Agent('test', tools=[Tool(my_tool, prepare=prep_my_tool)])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
function
|
ToolFuncEither[AgentDepsT]
|
The Python function to call as the tool. |
required |
takes_ctx
|
bool | None
|
Whether the function takes a |
None
|
max_retries
|
int | None
|
Maximum number of retries allowed for this tool, set to the agent default if |
None
|
name
|
str | None
|
Name of the tool, inferred from the function if |
None
|
description
|
str | None
|
Description of the tool, inferred from the function if |
None
|
prepare
|
ToolPrepareFunc[AgentDepsT] | None
|
custom method to prepare the tool definition for each step, return |
None
|
docstring_format
|
DocstringFormat
|
The format of the docstring, see |
'auto'
|
require_parameter_descriptions
|
bool
|
If True, raise an error if a parameter description is missing. Defaults to False. |
False
|
schema_generator
|
type[GenerateJsonSchema]
|
The JSON schema generator class to use. Defaults to |
GenerateToolJsonSchema
|
strict
|
bool | None
|
Whether to enforce JSON schema compliance (only affects OpenAI).
See |
None
|
sequential
|
bool
|
Whether the function requires a sequential/serial execution environment. Defaults to False. |
False
|
requires_approval
|
bool
|
Whether this tool requires human-in-the-loop approval. Defaults to False. See the tools documentation for more info. |
False
|
function_schema
|
FunctionSchema | None
|
The function schema to use for the tool. If not provided, it will be generated. |
None
|
Source code in pydantic_ai_slim/pydantic_ai/tools.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
|
function_schema
instance-attribute
function_schema: FunctionSchema = (
function_schema
or function_schema(
function,
schema_generator,
takes_ctx=takes_ctx,
docstring_format=docstring_format,
require_parameter_descriptions=require_parameter_descriptions,
)
)
The base JSON schema for the tool's parameters.
This schema may be modified by the prepare
function or by the Model class prior to including it in an API request.
from_schema
classmethod
from_schema(
function: Callable[..., Any],
name: str,
description: str | None,
json_schema: JsonSchemaValue,
takes_ctx: bool = False,
sequential: bool = False,
) -> Self
Creates a Pydantic tool from a function and a JSON schema.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
function
|
Callable[..., Any]
|
The function to call. This will be called with keywords only, and no validation of the arguments will be performed. |
required |
name
|
str
|
The unique name of the tool that clearly communicates its purpose |
required |
description
|
str | None
|
Used to tell the model how/when/why to use the tool. You can provide few-shot examples as a part of the description. |
required |
json_schema
|
JsonSchemaValue
|
The schema for the function arguments |
required |
takes_ctx
|
bool
|
An optional boolean parameter indicating whether the function accepts the context object as an argument. |
False
|
sequential
|
bool
|
Whether the function requires a sequential/serial execution environment. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
Self
|
A Pydantic tool that calls the function |
Source code in pydantic_ai_slim/pydantic_ai/tools.py
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
prepare_tool_def
async
prepare_tool_def(
ctx: RunContext[AgentDepsT],
) -> ToolDefinition | None
Get the tool definition.
By default, this method creates a tool definition, then either returns it, or calls self.prepare
if it's set.
Returns:
Type | Description |
---|---|
ToolDefinition | None
|
return a |
Source code in pydantic_ai_slim/pydantic_ai/tools.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
|
ObjectJsonSchema
module-attribute
Type representing JSON schema of an object, e.g. where "type": "object"
.
This type is used to define tools parameters (aka arguments) in ToolDefinition.
With PEP-728 this should be a TypedDict with type: Literal['object']
, and extra_parts=Any
ToolDefinition
dataclass
Definition of a tool passed to a model.
This is used for both function tools and output tools.
Source code in pydantic_ai_slim/pydantic_ai/tools.py
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
|
parameters_json_schema
class-attribute
instance-attribute
parameters_json_schema: ObjectJsonSchema = field(
default_factory=lambda: {
"type": "object",
"properties": {},
}
)
The JSON schema for the tool's parameters.
description
class-attribute
instance-attribute
description: str | None = None
The description of the tool.
outer_typed_dict_key
class-attribute
instance-attribute
outer_typed_dict_key: str | None = None
The key in the outer [TypedDict] that wraps an output tool.
This will only be set for output tools which don't have an object
JSON schema.
strict
class-attribute
instance-attribute
strict: bool | None = None
Whether to enforce (vendor-specific) strict JSON schema validation for tool calls.
Setting this to True
while using a supported model generally imposes some restrictions on the tool's JSON schema
in exchange for guaranteeing the API responses strictly match that schema.
When False
, the model may be free to generate other properties or types (depending on the vendor).
When None
(the default), the value will be inferred based on the compatibility of the parameters_json_schema.
Note: this is currently only supported by OpenAI models.
sequential
class-attribute
instance-attribute
sequential: bool = False
Whether this tool requires a sequential/serial execution environment.
kind
class-attribute
instance-attribute
kind: ToolKind = field(default='function')
The kind of tool:
'function'
: a tool that will be executed by Pydantic AI during an agent run and has its result returned to the model'output'
: a tool that passes through an output value that ends the run'external'
: a tool whose result will be produced outside of the Pydantic AI agent run in which it was called, because it depends on an upstream service (or user) or could take longer to generate than it's reasonable to keep the agent process running. See the tools documentation for more info.'unapproved'
: a tool that requires human-in-the-loop approval. See the tools documentation for more info.
defer
property
defer: bool
Whether calls to this tool will be deferred.
See the tools documentation for more info.